Plants circling in outer space

Oscillatory movements are ubiquitous in plants

Plants do not grow in a strict linear manner, rather they circumnutate. That is, they exhibit an oscillatory or helical growth pattern around an axis. Circumnutation is readily apparent in vines such as morning glory or grape (Fig. 1), but in fact it is nearly ubiquitous in plants. Circumnutation occurs in almost all plant organs throughout all stages of development (Johnsson, 1997; Larson, 2000). In the late 19th century, plant scientists noted that plant organs, including roots, shoots, stems, hypocotyls, branches, leaves and flower stalks, did not grow exactly in a linear direction. The mean growth direction may be maintained for long periods of time, but the organ’s instantaneous growth direction usually rotates or oscillates slowly around a mean. Circumnutation is best visualized using time-lapse photography (Fig. 2), and numerous examples, including sunflower seedlings, Arabidopsis stems and morning glory stems, are illustrated in movies found at the Plants-in-Motion website (http://plantsinmotion.bio.indiana.edu/). The paper by Johnsson et al. (pp. 621–629) in this issue of New Phytologist uses microgravity as a tool to study this interesting phenomenon in plants.

‘... this paper suggests not only that endogenous nutations occur in stems as Darwin predicted, but also that gravitational accelerations amplify these circumnutations.’

Is circumnutation dependent upon gravity?

Supporting Darwin’s endogenous hypothesis, Shabala (2006) summarized other possible functions of circumnutation, including synchronizing events between cells at different sites, functioning as a filter that helps separate signal from environmental noise and decreasing the response time when reacting to external stimuli. However, an alternate hypothesis is that circumnutation is dependent upon gravity and therefore is not a strictly endogenous feature of plants (Brown, 1993).

Several modern experiments support Darwin’s ‘endogenous hypothesis’. For example, in a spaceflight experiment, 93% of sunflower (Helianthus annuus) seedlings exhibited circumnutation in microgravity compared with 100% of control seedlings on the ground (Brown et al., 1990). The circumnutation of the seedlings in microgravity had a reduced period and amplitude...
relative to the ground control plants. By contrast, a series of papers by the Takahashi group in Japan suggested that gravity was required for circumnutation to occur. In their first report, they suggested a link between circumnutation and gravity based on their finding that an agravitropic mutant of morning glory (Pharbitis nil) also was defective in circumnutation (Hatakeda et al., 2003). In a follow-up study, this group also showed that mutants of P. nil and Arabidopsis thaliana lacking the endodermal layer, which is involved in gravity sensing in shoots (Kiss, 2000), exhibited severely reduced circumnutations – thus linking this phenomenon directly to mechanisms of gravity perception (Kitazawa et al., 2005).

In these elegant spaceflight studies (Johnsson et al.), a laboratory incubator facility with a centrifuge, termed the European Modular Cultivation System (EMCS), was used on the International Space Station (Kiss et al., 2007). Centrifuges provide important controls for spaceflight studies but have not been available for most biological experiments performed in space to date (Perbal & Driss-Ecole, 2002). Arabidopsis plants developed from seeds in microgravity, and once inflorescence stems were formed, the centrifuge provided 0.8 \textit{g} of acceleration, which is similar to the earth nominal control. After acceleration, the centrifuge was turned off so that the plants would again experience microgravity.

Johnsson et al. detected small nutational movements (with minute amplitude) of the side stems in microgravity before centrifugation. However, when the gravitational acceleration was provided to the level of 0.8 \textit{g}, the amplitude of the circumnutations increased five to ten times. Light also had an effect on circumnutations in that the period was decreased from 85 min (dark) to 60 min (light). Thus, the results presented in this paper suggest not only that endogenous nutations occur in stems, as Darwin predicted, but also that gravitational accelerations amplify these circumnutations.

What is the overall significance of these results? Johnsson et al. seem to favor a model that incorporates both hypotheses – the endogenous model and the idea that circumnutation is related to, and dependent upon, gravity. This space study was able to show that small, endogenous circumnutations do occur in microgravity, but that the gravitational accelerations provided by the centrifuge clearly increased their magnitude. Johnsson et al. and others in the field have referred to this idea as the ‘combined model’, which has been outlined in Brown (1991) and in Johnsson (1997).

In summary, the unique microgravity environment was used to test the hypothesis that circumnutations are an internal, endogenous feature of plant organs. This is important because, in previous studies, researchers could not study circumnutations in plants without the ‘complicating’ effects of gravity. In a similar manner, the microgravity environment obtained in orbiting spacecraft has been used effectively to study phototropism without the interference of gravity or gravitropism (Heathcote et al., 1995; Kiss et al., 2007). Thus, the experiments of Johnsson et al. provide a fine example of using the microgravity environment aboard orbiting spacecraft as a unique research tool to study important problems in fundamental biology (Perbal & Driss-Ecole, 2002). We look forward to further contributions from the science programs of the European Space Agency and the National Aeronautics and Space Administration from the laboratories aboard the International Space Station.

John Z. Kiss

Department of Botany, Miami University, Oxford, OH 45056, USA
(tel +1 513 529 5428;
email kisszj@muohio.edu)
New insights into bordered pit structure and cavitation resistance in angiosperms and conifers

The question of what structural features underlie differences in resistance to xylem cavitation is a long-standing issue fundamental to our understanding of water transport in plants. Plants routinely face xylem tensions great enough to cause cavitation and embolism, which may result in significantly increased hydraulic resistance, limitations on leaf gas exchange and ultimately carbon starvation and plant death (Tyree & Zimmermann, 2002; McDowell et al., 2008). The relative resistance of a plant to embolism is a major determinant of species distribution and the ability of plants to survive in the face of environmental stresses such as drought and freezing (Stuart et al., 2007). The xylem consists of a highly compartmentalized network of conduits in which emboli can be isolated while water transport continues in adjacent conduits. The continued function of this network depends on a large degree on the nano-porous primary cell walls (pit membranes) that separate conduits from one another. Pit membranes function as safety valves in the xylem, allowing the free passage of water between cells as it moves from the roots to the leaves, but limiting the spread of gas or pathogens. However, the fine porosity of pit membranes also results in significant hydraulic resistance, with pit hydraulic resistance accounting for a large proportion of total xylem hydraulic resistance (Zwieniecki et al., 2001; Choat et al., 2006). The structure and function of pit membranes is therefore of great importance in both the hydraulic efficiency of the xylem and cavitation resistance (Choat et al., 2008). Although there is a great breadth of diversity in bordered pit structure across higher plants, pit membranes can generally be divided into two major forms: homogeneous pit membranes, typical of angiosperm species; and margo–torus pit membranes of tracheid-bearing conifers (Fig. 1). In this issue of New Phytologist, two exciting studies extend our understanding of the relationship between xylem structure and resistance to cavitation: Christman et al. (2009, pp. 664–674) examine the anatomical underpinning of cavitation resistance in angiosperm species, while Hacke & Jansen (2009, pp. 675–686) report a detailed investigation of margo–torus pit structure and its influence on cavitation resistance in three conifer species.

‘It is obvious from this work that rare, leaky pits have dramatic consequences for the ability of plants to sustain water transport as water stress and xylem tension increases.’

Cavitation resistance in angiosperms

Pores of homogenous pit membranes are of sufficiently small dimensions that they will prevent gas being drawn into an adjacent water-filled vessel until a critical threshold is reached (e.g. a 100-nm-diameter pore will prevent gas penetration up to

References

Key words: circumnutation, gravitropism, nutation, space biology.
a pressure difference of 2.88 MPa across the pit membrane). The potential for the spread of embolism between vessels and throughout the xylem is therefore dictated by the porosity of pit membranes and the minimum value of xylem water potential (negative hydrostatic pressure in the xylem fluid). Species with smaller pit-membrane pores are predicted to have greater cavitation resistance, and thus to tolerate greater degrees of water stress, than those with larger pit-membrane pores. However, although the relationship between pit-membrane pore size and cavitation resistance has sound theoretical underpinnings, it has been difficult to confirm this empirically by matching observed pore sizes to measured cavitation resistance across a range of species, with many studies failing to find pores large enough to be responsible for air seeding at realistic pressures (Wheeler, 1983; Shane et al., 2000; Choat et al., 2003). One explanation for this discrepancy is that the pores responsible for air seeding are actually extremely rare. Because air seeding will always occur first at the largest pore, it is only required that there be one large pore present in all of the many thousands of pit connections between two vessels. A rare, large pore may therefore escape detection by electron microscopy or particle-exclusion experiments. Support for this idea is provided by the work of Wheeler et al. (2005), which shows a strong correlation between cavitation resistance and the average area of pit overlap between vessels. This suggests that cavitation resistance might be determined stochastically, with the probability of having a rare, large pore increasing with the area of contact between vessels.

Christman et al. provide further support for this hypothesis, using an elegant pairing of theory and empirical data. Probability theory was used to model the cavitation threshold of pit membranes in three Acer species that have differing resistances to cavitation. The model incorporates the theory that if there is a normal distribution of pore diameters in any connection between vessels, only the extreme tail of the distribution will be responsible for air seeding. In fact, the model suggests that only one in 10,000 pits would be ‘leaky’ enough to cause air seeding at measured air-seeding thresholds. To test this model, Christman et al. measured air-seeding thresholds on different stem lengths of the three Acer species. This is analogous to a membrane-filter bubble test, where the pore diameter of a filter can be predicted from the pressure required for gas penetration through the filter. The model predicts that short stem segments with fewer vessel end walls should air-seed at lower pressures than longer stem sections in which air must penetrate an increasing number of intervessel end walls to move through the entire segment. The empirical data matched the modeled predictions of air-seeding pressures closely. As the stem length increased, air-seeding pressures also increased, indicating that the effects of rare, large pit-membrane pores was masked by the majority of end walls, which lack very leaky pits. In the shortest stem segments, air-seeding pressures were consistently lower than the average cavitation pressures of each species. This evidence confirms that there is wide variation in the porosity of pit connections within each stem, and strongly suggests that a very small variation in the frequency of the rare, large pores can have a significant effect on cavitation resistance, which is independent of the number of pits or the total pit area.

It is obvious from this work that rare, leaky pits have dramatic consequences for the ability of plants to sustain water transport as water stress and xylem tension increases.

Fig. 1 Variation in pit structure. (a) A homogeneous pit membrane of an angiosperm species, Acer negundo, and (b) a margo–torus type pit membrane of a conifer, Calocedrus decurrens. Homogeneous pit membranes, typical of angiosperm species, have a relatively uniform array of microfibrils, whereas in margo–torus pit membranes of tracheid-bearing conifers, the conductive and protective functions of the membrane are spatially distinct as a porous outer region (margo) that allows for movement of water between conduits and a central thickened plug (torus).
In a structural departure from the homogenous pit membrane of angiosperms, the conifer torus–margo pit membrane combines a high degree of cavitation protection with efficient water transport that allows conifer xylem to achieve hydraulic efficiencies similar to those of angiosperms. In conifer wood, water transport occurs through single-celled conduits, known as tracheids, rather than through the long multicellular vessels characteristic of angiosperms; consequently, as water moves from one tracheid to another at a given segment length, it encounters a much higher frequency of the pitted end-wall regions than it would in vessels. Thus, in the absence of low-resistance end-walls, conifer xylem can potentially represent a hydraulically inefficient, high-resistance network requiring large pressure gradients to drive water transport. Conifers have avoided this problem by developing the torus–margo pit membrane in their tracheid end-walls. This structure reduces the end-wall hydraulic bottleneck because water travels through the net-like margo region of the membrane, a substantially more porous structure than the homogenous pit membrane. Consequently, pit resistance in conifers is almost 60 times lower than in angiosperms, effectively compensating for the frequent end-wall crossings presented by short tracheids (Pittermann et al., 2005; Sperry et al., 2006). Importantly, the hydraulic efficiency of conifer xylem is equivalent to that of angiosperm xylem for a given conduit diameter.

Control of cavitation resistance in conifers

The high degree of cavitation resistance in conifer xylem is achieved through a combination of anatomical and structural adaptations. Conifers have evolved a unique pit structure that allows for high cavitation resistance and efficient water transport. The torus–margo pit membrane plays a crucial role in this process by providing an additional layer of protection against cavitation. This layer is composed of a torus that overlaps the margo region of the pit membrane, creating a barrier that prevents air from entering the vessel under tension. The size and shape of the torus, along with the characteristics of the margo region, are critical factors in determining the overall cavitation resistance of the xylem.

Characteristics at both pit and tissue levels will influence cavitation resistance in plants. It is simply a question as to what extent the selective pressures that act to match cavitation resistance of angiosperm species to their environment have been satisfied by shifts in tissue-level traits rather than variation in microscopic pit structure. It will be most intriguing to see how the relationship between these traits evolves as more data become available.

Box 1 Cavitation resistance in conifers

Under functional, water-filled conditions where the xylem pressure (P_x) is below zero, the conifer pit membrane is centrally located in the pit chamber allowing water to move through the margo unimpeded. Should one tracheid become air-filled ($P_x = 0$), the pressure difference across the menisci in the margo pores will be sufficient to deflect the membrane towards the adjoining functional tracheid where $P_x < 0$. This way, the torus is appressed against the pit aperture, thereby isolating the water-filled tracheid from its dysfunctional neighbor. Cavitation presumably occurs when P_x becomes negative enough to cause the torus to slip from its sealing position, allowing air to enter the water-filled tracheid. Indeed, the sealing action of the torus over the pit aperture may be one reason why only a weak correlation between pit area and cavitation resistance has been observed in conifer stems (Pittermann et al., 2006).
a combination of a thinner torus and a shallow pit chamber may form a tighter seal over the pit aperture. The authors suggest that deeper pit chambers may require the margo to stretch further to seal the aperture, thereby predisposing the fibrils to irreparable damage by tearing.

Hacke & Jansen’s study arrives on the heels of recent work that underscores the functional significance of conifer pit membranes on tree height. The pit aperture may represent a significant proportion of transport resistance in their xylem, so if apertures shrink to improve cavitation resistance, the resulting decrease in aperture conductance thus represents a clear trade-off in hydraulic efficiency at the pit level. Indeed, a linear relationship between the torus : aperture ratio and cavitation resistance has been observed with increasing height in very tall Douglas-fir trees: at greater branch heights, cavitation resistance increases to compensate for increasing xylem tensions but at the cost of reduced transport efficiency through the pit aperture (Domec et al., 2008). Given the linear relationship between the torus : aperture diameter and height, this compromise in pit structure places an important constraint on the maximum height that these trees can reach. Whether any clear relationship exists between pit architecture and tree height in tall angiosperms remains to be seen.

Future directions for research

While great strides have recently been made in our understanding of structure–function relationships in the xylem, important gaps still remain. For example, the spatially complex structure of the angiosperm vessel network has not often been incorporated into measurements of xylem function. The three-dimensional arrangement and connectivity of vessels has enormous potential to influence the efficiency and the propagation of embolism through the xylem. As imaging technology, such as X-ray computed tomography and magnetic resonance imaging, is refined, our ability to resolve flow and propagation of embolism, in three dimensions and in real time, will be greatly improved. We can now measure hydraulic function directly at the pit level, so given the great variation in the structure of interconduit pits and their importance to hydraulic function, further direct measurements are warranted. In conifers, additional evaluation of the margo structure, and its implications for hydraulic trade-offs, should be considered. Because of its delicate nature the margo is often difficult to visualize using scanning electron microscopy. A combination of careful observation of margo structure and improved capability to simulate flow through complex structures should allow an improved resolution of the role that variation in margo structure plays in trade-offs at the tissue and whole-plant levels.

Brendan Choat1* and Jarmila Pittermann2

1Functional Ecology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT, 2601, Australia; 2Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, 95064, USA (*Author for correspondence: tel +61 2 6125 4558; email brendan.choat@anu.edu.au)

References

Key words: air seeding, bordered pit, cavitation, embolism, torus–margo pit membranes, xylem.
Mycorrhizas in Upper Carboniferous *Radiculites*-type cordaitalean rootlets

Mycorrhizas are mutualistic associations between plants and fungi; > 90% of embryophytes are capable of forming symbioses of this type. The fungus uses the host as a source of carbon, while the host is supplied with mineral elements by the fungus. Endomycorrhizal fungi associated with prostate axes of *Aglaotheca major* (parazymocorhizas sensu Strullu-Derrien & Strullu, 2007) from the Lower Devonian Rhynie chert represent the oldest occurrence of mycorrhizas (Remy *et al.*, 1994; Taylor *et al.*, 2005). The fungi involved in this and other mycorrhizal associations from the Rhynie chert belong to the *Glomeromyctes*, a fungal phylum established by Schüßler *et al.* (2001) using molecular data. Evidence from these plant-bearing deposits indicates that all main spore types in the *Glomeromyctes* were in existence before the evolution of true roots (Dotzler *et al.*, 2008).

Extensive collections of thin sections of petrified plant material were manufactured during the early twentieth century. These collections are an invaluable source of information about associations between plants and microorganisms (Krings *et al.*, 2007). Our study focuses on fungal associations in permineralized *Radiculites* rootlets of the *Radiculites*-type (assigned to cordaitalean *reticulatus*) from the flora from Grand’Croix (France) based on the original slides contained in the Lignier, Florin and Carpentier collections. The thin sections were prepared in the early twentieth century from material collected from the late Pennsylvanian (Upper Carboniferous) ‘Poudingue Mosaïque’ of Grand’Croix, which belongs to the Saint Etienne coal basin (Massif Central, central France). This basin is situated 50 km southwest of the town of Lyon. Information about the geological setting of Grand’Croix can be found in Doubinger *et al.* (1995). Thin sections were prepared according to standard techniques. A piece of silicified rock was cemented to a glass slide and then ground to a thickness sufficiently thin to allow for examination in transmitted light. Slides were studied using dry or oil immersion objectives. The Lignier slide collection is today housed in the Herbarium (C.N.) of the University of Caen (France), the Carpentier slides are kept in the collections of Lille Catholic University (France) and the Florin collection is housed in the Natural History Museum of Stockholm (Sweden).

Characterization of the rootlets

The rootlets are up to 0.65 mm in diameter. In transverse section, they appear well-delimited by an epidermis composed of dark cells (Fig. 1). An exodermis occurs beneath the epidermis; it is one or two layers in thick and consists of cells characterized by thickenings on the periclinal walls. The cells of the outermost exodermal layer are brown in colour. Root-hairs were not observed. The cortex is composed of parenchymatous cells that become more elongated toward the centre of the root. The cells of the cortex are characterized by phi thickenings (Fig. 1b,c), which are prominent in cells located close to the vascular cylinder and gradually become smaller towards the periphery. The name phi thickenings, based on the resemblance of these structures in cross-section to the Greek letter phi, was given by Russow (1875; cited in van Tieghem, 1888). The thickenings form a frame that corresponds to the frame of the adjoining cell (Fig. 1c). An endodermis with a distinct casparian strip on the anticlinal walls separates the cortex from the vascular cylinder. The rootlets generally possess a diarch primary xylem.

The cortical network described above is obvious in all specimens studied and shows a pattern similar to that seen in the rootlets of extant Cupressaceae (s.l.) (Gerrath *et al.*, 2002). There are distinct differences with regard to the shape of the thickenings, which may be linked to habitat because the specimens come from three different localities (Grand’Croix, Cuzieu and Assailly) within the ‘Poudingue Mosaïque’ (Fig. 1b,c).

Evidence for endomycorrhizal colonization in the rootlets of Cordaites

Lignier (1906) was the first to report endophytic fungi in *Radiculites reticulatus* cordaitalean rootlets and referred to them as mycorrhizas. Zimmermann (1933), who also studied material from Grand’Croix, suggested that mycorrhizal infection was restricted to a few large cells that lack a casparian strip. In fact, the occurrence of mycelial hyphae was only documented in the outer cortex. This meant that the mycorrhizal status of *R. reticulatus*, as well as that of other supposedly mycorrhizal cordaitalean rootlets (*e.g.*, *Amyelon radicans*; see Osborn, 1909; Halket, 1930), was contested (Cridland, 1962). Cridland suggested that the fungus in Lignier’s material represents a parasite or saprotroph, rather than a mutualist. He also restudied Carpentier’s material, but from the Lower Permian, while we focused on specimens from the Upper Pennsylvanian of Grand’Croix (Carpentier,
1932). However, the cortical network that characterizes the Radiculites-type rootlets has not been reported for Amyelon-type rootlets (Cridland, 1964). As a result, these two types of rootlets appear to belong to different genera of Cordaites. The colonization of Amyelon radicans by endophytic fungi has not yet been reinvestigated.

The relationship of R. reticulatus rootlets to the Cordaites was established by Lignier (1911). Attachment of the Radiculites-type rootlets to larger cordaitalean roots have been observed in three of the Lignier’s slides. Mycorrhizal associations occur in the rootlets that correspond to the primary state of growth of cordaitalean roots (Fig. 1a). The best preservation occurs in the material from the Lignier and Carpentier collections, where many rootlets show evidence for mycorrhization. Rootlet diameters vary from 0.5 to 0.65 mm. The fungus colonizes a discontinuous fungal zone in the central layers of the cortex (Fig. 2a,c, arrows). Colonization is characterized by the absence of intercellular phase and by the development of intracellular coiled hyphae (Fig. 2f), which spread from cell to cell. While vesicles have not been observed in the cordaitalean rootlets, small arbuscules occur in some of the cortical cells. The arbuscules are most easily recognized in longitudinal sections (Fig. 2b–d). As in living plants, the cell wall shows a slight thickening, called an apposition, that forms at the point of entry of the fungal hypha (Fig. 2b). Arbuscules (Fig. 2b–d) originate from the coiled hyphae and are morphologically identical to those seen in arbuscular mycorrhizas of extant plants. The hyphal trunk of the arbuscule is 2 µm wide and branches repeatedly to form a bush-like tuft within the cell (Fig. 2c,d). Moreover, a few of the cortical cells appear to be filled with material similar in appearance to the amorphous masses that are the result of arbuscule degeneration in the cells of living plants (Fig. 2a). Based on the evidence assembled, we suggest that the AM association in R. reticulatus is of the Paris type (Strullu, 1985). The endophyte is only associated with ontogenetically young axes. Additional details of the association are difficult to resolve, owing primarily to the prominence of the cortical thickenings in the rootlets; a similar masking of fine details of the mycorrhiza by cortical cell thickenings has been recorded for extant plants with Paris-type mycorrhizas (cf. Thuja occidentalis, Brundrett et al., 1990).

In a recent survey (Strullu-Derrien & Strullu, 2007), we reported the distribution of mycorrhizal associations in fossil and extant plants. The oldest fossil evidence for the existence of mycorrhizas occurs in Aglaophyton major from the Lower Devonian Rhynie chert (Remy et al., 1994; Taylor et al., 2005). Robust arbuscules and vesicles have been found in Antarcticycas schopfii from the Triassic (Stubblefield et al., 1987) and mycorrhizal associations have been described in Lower Cretaceous and Middle Eocene conifer roots (Stockey et al., 2001). The colonization of the Carboniferous cordaitalean R. reticulatus rootlets described here is the oldest unequivocal fossil evidence for eumycorrhizas (i.e. fungal–plant root associations) and the oldest evidence for mycorrhizal associations in the conifer clade.
The authors thank Prof. M. Krings for useful analysis of the manuscript. C.S-D. gratefully acknowledges Prof. E. M. Friis for her welcome in the Department of Palaeobotany in the framework of the Synthesys program and thanks her collaborators for Laboratory assistance. The authors extend their gratitude to Dr D. Brice for making the slides from the collection Carpentier available. They also thank Dr P. Gerrienne and C. Ferrier for their cooperation and the anonymous reviewers for their constructive suggestions. This work was partly funded by Synthesys support made available by the European Community-Research Infrastructure Action under the FP6 ‘Structuring the European Research Area Programme’, SE-TAF 3444.

Acknowledgements

Christine Strullu-Derrien1,2*, Jean-Philippe Rioult3 and Désiré-Georges Strullu1

1Université d’Angers, Laboratoire Mycorhizes, Faculté des Sciences, 2 boulevard Lavoisier, F–49045 Angers Cedex, France; 2Paléobotanique, Paléopalynologie, Micropaléontologie, Université de Liège, B–4000 Liège 1, Belgium; 3Equipe de Recherches et d’Etudes en Mycologie, Département de Botanique, Mycologie et Biotechnologie, UFR des Sciences pharmaceutiques F–14032 Caen Cedex, France (*Author for correspondence: tel +33 (0)2 41 73 53 56; email christine.strullu-derrien@univ-angers.fr)
References

Key words: arbuscules, Cordaites, cortical network, mycorrhizas, phi thickenings, Radicalites rootlets.

About New Phytologist

- New Phytologist is owned by a non-profit-making charitable trust dedicated to the promotion of plant science, facilitating projects from symposia to open access for our Tansley reviews. Complete information is available at www.newphytologist.org.

- Regular papers, Letters, Research reviews, Rapid reports and both Modelling/Theory and Methods papers are encouraged. We are committed to rapid processing, from online submission through to publication ‘as-ready’ via Early View – our average submission to decision time is just 29 days. Online-only colour is free, and essential print colour costs will be met if necessary. We also provide 25 offprints as well as a PDF for each article.

- For online summaries and ToC alerts, go to the website and click on ‘Journal online’. You can take out a personal subscription to the journal for a fraction of the institutional price. Rates start at £139 in Europe/$259 in the USA & Canada for the online edition (click on ‘Subscribe’ at the website).

- If you have any questions, do get in touch with Central Office (newphytol@lancaster.ac.uk; tel +44 1524 594691) or, for a local contact in North America, the US Office (newphytol@ornl.gov; tel +1 865 576 5261).